I.- Sistemas con tres o más incógnitas

951.952.
\large \; x-\; y-\; z=\; 1
\large 2x-5y+10z=5
\large 3x+2y-11z=10
\large 4x+2y-z=5
\large 5x-3y+z=2
\large 2x-\; y+z=3
953.954.
\large 4x-3y+2z=8
\large 5x+\; y-\; z=16
\large 6x-2y-3z=11
\large 2x-\; y+\; z=12
\large 4x-3y-\; x=-18
\large x+3y-4z=-20
955.956.
\large x+\; \: y+\: \; z=\; \: 0
\large 7x+2y-\: \; z=5
\large 3x+5y+4z=-2
\large 4x-3y+2z=\: \; 9
\large 2x+5y-3z=\: \; 4
\large 5x+6y-2z=18
957.958.
\large 5z-6z+4u=15
\large 7x+4z-3u=19
\large 2x\; +\; z\; +6u=46
\large 2x+3y+4z=16
\large 3x+2y-5z=\; 8
\large 5x-6y+3z=\; 6
959.960.
\large \; x\; +\; y\; -\; z=-10
\large 2x-3y+5z=\; 23
\large 3x+2y+2x=\; 11
\large 2x+4y-3z=22
\large 4x-2y+5z=18
\large 6x+7y\; -\; z=63
961.962.
\large x+y=\; 11
\large x+z=101
\large y+z=110
\large x+y=10
\large x+z=19
\large y+z=23
963.964.
\large 3x+4z=20
\large 5x-2u=18
\large 4z+9y=35
\large 6x-7u=17
\large 2x-3t+2z=13
\large 4u-2x=30
\large 4t+2z=14
\large 5t+3u=32
965.966.
\large x+\frac{y}{2}=1
\large y+\frac{z}{3}=1
\large z+\frac{x}{4}=1
\large \frac{x}{2}+\frac{y}{3}+\frac{z}{4}=41
\large \frac{x}{3}+\frac{y}{4}+\frac{z}{5}=31
\large \frac{x}{4}+\frac{y}{5}+\frac{z}{6}=25
967.968.
\large 3x-2y=15
\large \; x+3u=\; 8
\large 2x-5u=\; 5
\large 3x+4x=\; 7
\large \; x\; +\; z\; +\; y\; +\; u\; =10
\large 2x+3z+5y-3u=24
\large 3x+5z-2y+8u=31
\large 5x-4z+3y+6u=20
969.
\large 7x-2z+3u=17
\large 4r-2z+\: \: t=11
\large 5x-3x-2u=\: 8
\large 4x-3u+2t=\; 9
\large 3z+8u=33
970.
\large \frac{3y-1}{4}=\frac{6z}{5}-\frac{x}{2}+1\, \frac{4}{5}
\large \frac{5x}{4}+\frac{4z}{3}=y+\frac{5}{6}
\large \frac{3x+1}{7}-\frac{z}{14}+\frac{1}{6}=\frac{2z}{21}+\frac{y}{3}
971.972.
\large \frac{1}{x}+\frac{1}{y}=\frac{4}{3}
\large \frac{1}{y}+\frac{1}{z}=\frac{8}{15}
\large \frac{1}{x}+\frac{1}{z}=\frac{6}{5}
\large x+y=a
\large x+z=b
\large y+z=c
973.
\large \frac{1}{x}+\frac{1}{y}=a
\large \frac{1}{x}+\frac{1}{z}=b
\large \frac{1}{y}+\frac{1}{z}=c

Ir a las soluciones